Temperature-Induced Structural Transitions in the Gallium-Based MIL-53 Metal–Organic Framework

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reversible structural transition in MIL-53 with large temperature hysteresis.

The metal-organic framework, MIL-53, can have a structural transition from an open-pored to a closed-pored structure by adsorbing different guest molecules. The aid of guest molecules is believed to be necessary to initiate this "breathing" effect. Using both neutron powder diffraction and inelastic neutron scattering techniques, we find that MIL-53 exhibits a reversible structural transition b...

متن کامل

Water Adsorption in Flexible Gallium-Based MIL-53 Metal−Organic Framework

Understanding the adsorption of water in metal−organic frameworks (MOF), and particularly in soft porous crystals, is a crucial prerequisite before considering MOFs for industrial applications. We report here a joint experimental and theoretical study on the behavior of a gallium-based breathing MOF, Ga-MIL-53, upon water adsorption. By looking at the energetics and thermodynamics of Ga-MIL-53,...

متن کامل

Structural transitions in MIL-53 (Cr): view from outside and inside.

We present a unified thermodynamic description of the breathing transitions between large pore (lp) and narrow pore (np) phases of MIL-53 (Cr) observed during the adsorption of guest molecules and the mechanical compression in the process of mercury porosimetry. By revisiting recent experimental data on mercury intrusion and in situ XRD during CO(2) adsorption, we demonstrate that the magnitude...

متن کامل

Electrically Induced Breathing of the MIL-53(Cr) Metal–Organic Framework

The breathing behavior of the MIL-53(Cr) metal-organic framework (MOF) has been explored previously upon guest-adsorption and thermal and mechanical stimuli. Here, advanced molecular simulations based on the use of an accurate force field to describe the flexibility of this porous framework demonstrate that the application of an electrical field induces the structural switching of this MOF lead...

متن کامل

Constructing Free Standing Metal Organic Framework MIL-53 Membrane Based on Anodized Aluminum Oxide Precursor

Metal organic framework (MOF) materials have attracted great attention due to their well-ordered and controllable pores possessing of prominent potentials for gas molecule sorption and separation performances. Organizing the MOF crystals to a continuous membrane with a certain scale will better exhibit their prominent potentials. Reports in recent years concentrate on well grown MOF membranes o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of Physical Chemistry C

سال: 2013

ISSN: 1932-7447,1932-7455

DOI: 10.1021/jp312179e